Form 1 Hobby Boiler Boiler owner complete lines 1, 2, & 3 prior to initial inspection:

 Boiler Identification (owner Washington State Special N Owner's Address: City, State & Zip: 	lumber:		
Inspection Verify Materials Form 2* Verify Design Disclosure Form Verify Boiler Drawings*	ı 3*		
Enter Certificate Pressure			PSIG
Hydrostatic Pressure Test**			PSIG
Verify Satisfactory Pressure T	est:		
	rnal: rnal:		
Verify Satisfactory Safety Valv ASME	ve Operation Non-ASME		
Witness Satisfactory Boiler Op	peration		
Certify Boiler	Yes	No	(***)
Inspector	Number	Date:	

*Not required for Annual Testing.

**Enter pressure corresponding to test requirements.

***Attach written reason for not accepting, including reference to requirements.

Hobby Boilers Inspection Check List

Revision 0

Maximum Allowable Working Pressure (MAWP) is defined as the maximum pressure determined by the lowest calculated pressure of each separate component.

<u>Component</u>	Form 2: Material List and MAS:	Form 3: (MWAP)
1. Boiler shell (Boiler Barrel)	SA 53 gr. B Smls - Pipe - 15,000 MAS	PSI
2. Front Tube Sheet (Plate)	SA 36 - Plate - 14,500 MAS	PSI
3. Rear Tube Sheet (Firebox Tubesheet)	SA 36 - Plate - 14,500 MAS	PSI
4. Flues (fire tubes)	1/2" Tubes B-88 copper	PSI
5. Super heater tubes	1" Tubes B-88 copper	PSI
6. Firebox Side (Leg) Stays	SA 36 - Plate - 14,500 MAS	PSI
7. Firebox sides	SA 36 - Plate - 14,500 MAS	PSI
8. Crown Sheet Round stays	SA 36 - Plate - 14,500 MAS	PSI
9. Crown Sheet Girder Stays:	SA 36 - Plate - 14,500 MAS	PSI
10 Crown Sheet	SA 36 - Plate - 14,500 MAS	PSI
11 Mud Ring	SA 36 - Bar Stock - 13,300 MAS	PSI
12 Siphon Tubes	1/2" Tubes B-88 copper	PSI
13 Throat Sheet	SA 36 - Plate - 14,500 MAS	PSI
14. Steam Dome	Unidentified Steel - All Forms - 10,300 MAS	PSI
15. Firebox Backplate	SA 36 - Plate - 14,500 MAS	PSI
16 Backhead	SA 36 - Plate - 14,500 MAS	PSI

Note: Under Form 3 above, if "N/A" appears, that component is not installed in this boiler.

The lowest MAWP from the above chart is _____ PSI (_____). However, this exceeds the MAWP allowed by the Washington State Miniature Hobby Boiler Guidelines. Therefore:

The MWAP for this boiler shall be _____ PSIG

1. The materials utilized in boiler fabrication shall be noted in the application sections of the Boiler Material Form (Form 2). When completed, the form shall be signed by the owner or fabricator thereby certifying that the noted materials used are as indicated.

2. Maximum allowable material stress will be indicated in the following table. This table lists materials and the stress that may be used in fabrication of boilers fabricated in accordance to the requirements set forth in this procedure. However, the boiler is not limited to these materials only.

3. Seamless and welded shells made from pipe for miniature boilers shall be not less than 3/16 in. (5.0 mm) in thickness. Shells or heads made from plate shall be not less than 1/4 in. (6 mm) in thickness. Heads used as tube-sheets, with tubes expanded, shall be at least 5/16 in. (8 mm) in thickness.

4. The maximum allowable stress (MAS) to be used for maximum allowable working pressure (MAWP) calculations shall be 0.75 times the maximum stress allowed at 400 deg. F, by Section II Part D, ASME code for specific known materials. All other shall be prescribed in the table below.

Form 2: Weld/Solder Material				
Area:	All	Filler:	Root:	
Tested by:	. <u></u>		Date:///	

Preamble to Calculations and their results

Boiler Design Calculations

Background:

The Revised Code of Washington (RCW 70.79.070) places the responsibility on the owner for certification of Miniature Hobby Boilers with the Department of Labor and Industries, Boiler and Pressure Vessel Section. Under this authority, the Boiler and Pressure Vessel Section have developed the following dimensional limitations and criteria (taken from the 1998 ASME code, Section I, PMB-2, pg 157).

For a boiler to be certified as a Miniature Hobby Boiler, it must fall within the following guidelines:

- 1) The maximum of sixteen inches inside boiler shell diameter;
- 2) A maximum of twenty square feet of total heating surface;
- 3) A maximum gross volume of five cubic feet, and a minimum of seventy five cubic inches;
- 4) A maximum allowable working pressure of 150 psig

BOILER DESIGN CALCULATIONS AND THEIR RESULTS

I Inside boiler shell diameter shall be sixteen inches or less:

 inches
 inche

Boiler Wall Thickness: _____ Inches

Barrel ID: _____ Inches

Inside diameter (ID) of boiler shell = _____ Inches

Boiler design calculations and their results continued:

II. Heating area of the boiler components shall be twenty square feet or less.

A. Tubes: The tubes shall consist of the sum of the areas being heated, or the circumferential surface times the length of the tubes times the number of tubes.

Superheater: Note: Superheater tubes
are or
are not installed in this boiler

ID of Tube: Length of Tube: Number of Tubes:	inches inches			
Formula: π * Tube ID radi	ius * Tube Length * Number of tubes =Sq In.			
Boiler tubes also known a	as boiler tubes or flues:			
ID of Tubes Length of Tube Number of Tubes:	inches inches			
Formula: π x Tube ID radi	us * Tube Length * Number of tubes = Sq In.			
Total of tube heating	area = Sq In			
B: Front tube sheet: The front tube sheets shall consist of the area of the tube sheet less the sum of the areas of the tubes.				
Front tube sheet OD OD of Superheater tubes i Number of Tubes OD of firebox flues Number of Tubes	Sq In f present: Inches (Note: enter n/a if not present) Inches			
Formula: π * Front tube sł	neet radius squared* less the heating area of the tubes = Sq In			
Total Tube sheet heating area: Sq In				
C: Crown Sheet: The surface area of the crown sheet is calculated using the length times the width measurements. In this case the area was calculated using the "Area" function within the Cad program used to generate the area. See the attached drawing.:				
Formula: Length * Width = Total Sq In Sq In				
The area of the Crown Sheet using the above formula is Sq In				

Total crown sheet heating area: sq In

D: Firebox sides (legs): The surface area of the firebox sides is calculated using the length times the width measurements. In this case the area was calculated using the "Area" function within the Cad program used to generate the area. See attached drawing.:

Formula: Height * Average length * 2 as there is two sides.

The area of the firebox sides (legs) using the above formula is: _____Sq In

Total crown sheet heating area: sq In

E: Firebox backplate: The surface area of the firebox backplate is calculated using the height times the width measurements. In this case the area was calculated using the "Area" function within the Cad program used to generate the area. See the attached drawing:

Formula: height * width

The area of the firebox backplate using the above formula is: ______ sq in.

Total Firebox Backplate heating area: Sq In

F: Firebox Front Tube Sheet: The surface area of the Firebox front tube sheet is calculated using the height times the width measurements. In this case the area was calculated using the "Area" function within the Cad program used to generate the area. See the attached drawing:

Formula: (Height * average width) – area of tube ends

The area of the Firebox Front Tube Sheet using the above formula is: ______ sq In

Total Firebox Front Tube Sheet heating area: In

G: Firebox Siphon Tubes: Note: if firebox box siphon tubes are not present, the values will show "N/A".

OD Tube _____ inches Length of tube _____ inches Number of tubes _____

Formula: Total of tube heating area = OD * p * Length * # of tubes = 65.53 sq In

<u>Tota</u>	is: Sq In	
A.	Total of tube heating area:	Sq In
В.	Total front tube sheet heating area:	Sq In
C.	Total of crown sheet heating area:	Sq In
D.	Total of firebox sides heating area:	Sq In
Ε.	Total of firebox rear heating area:	Sq In
F.	Total of front tube sheet heating area:	Sq In
G.	Firebox siphon tube heating area:	Sq In
	Total:	Sq In

<u>144 Sq In = 1 Sq Ft, so /144 = Sq ft</u>

Total heating area: Square Feet

III. Total gross volume of this boiler shall include the following calculations:

Α.	Boiler Barrel:		
	Barrel OD:	_ inches	
	Boiler wall thickness:	_ Inches	
	Barrel ID:	_ Inches	
	Radius:	_ Inches	
	Length*	_ Inches	
	*Note: inches between inside of fron	t tube sheet to the forward side o	of the back tube sheet.
	Formula: Volume = π * barrel ID radiu	us * barrel length =Cu	bic Inches

Total Boiler Barrel Volume - 2,695.83 Cubic Inches

B. <u>Firebox Legs (Sides):</u>

The firebox legs (Sides) are of an irregular shape and are equal to the previous calculations for the heating surface. The square inch calculations are used for that portion of the volume calculations.

Area of Firebox legs from cad drawings:Sq InDistance between the water side of theFirebox legs and the inside of the firebox sidesInches

Formula: Area of firebox legs * Distance between = _____ Cu In

Total Firebox Legs Volume = Cubic Inches

C. Firebox Rear End:

The firebox rear end is calculated based upon the height of the firebox backplate x its average width x the space between the firebox backplate and the firebox backhead.

Area of the Firebox back plate from Cad drawing: ______ Sq In Distance between firebox backplate and backhead: ______ Inches

Formula: Area of firebox back plate * Distance between = _____ Cu In

Total Firebox Rear End Volume = Cubic Inches

D. Firebox front end:

Area of firebox rear end from Cad drawing:Sq InDistance between firebox rear end and backhead:Inches

Formula: Area of firebox rear end * Distance between = 41.494 Cu In.

Total Firebox Front End Rear End Volume = Cubic Inches.

E. Firebox crown sheet area:

Radius of barrel:	Inches
Height between top of crown sheet and underside of barrel:	Inches
Distance from front edge of crown sheet to inside back edge of backhead:	Inches

Formula: segment of a circle times the distance from the front end of the crown sheet to the middle of the backhead above the crown sheet = _____ Cu In. The formula for a segment of a circle required to calculate this can be found at: http://www.mathopenref.com/segmentareaht.html.

Total Firebox Crown Sheet Volume Cubic Inches.

Summary of the gross volume for this boiler:

Total Boiler Volume =	Cubic Feet.	
The conversion of Cu. In. to Cu. Ft	is divided by 1728 =	Cu Feet
Total:	Cu. In.	
E. Total fire box crown sheet volume	:: = <u>Cu. In</u> .	
D. Total Firebox front volume =	Cu. In.	
C. Total Firebox rear volume =	Cu. In.	
B. Total Firebox leg volume =	Cu. In.	
A. Total boiler Barrel volume =	Cu. In.	

IV Boiler Calculations to determine the *maximum* boiler pressure allowed for this boiler:

Maximum Allowable Working Pressure (MAWP) is defined as the maximum pressure determined by the lowest calculated pressure of each separate component.

If the MAWP of any component is less than 150 psi, that will be the MAWP for the boiler, otherwise the MAWP shall not be more than 150 psi.

Maximum Allowable Stress (MAS) is the maximum stress on each separate component. Washington State allows the following stress ratings on material used within this boiler at 400 degrees Fahrenheit:

Material, Form and Stress Value (MAS) See page 2 of 13 for a complete list of all materials, form and stress values (MAS)

Copper Tube The values to be determined by information available on a case by case basis.

1. Boiler Shell (Barrel)

For Boiler Shells, cylinders, and parts of Cylinders, the following equation is limited to longitudinal sections. 2 * S * E * t

	$P = \frac{1}{D - (2 * Y * t)}$
Where:	
P = MWAP	
S = MAS:	
D = OD of Cylinder (Barrel):	inches
E = Constant for Seamless or welded pipe:	0.90
Y = Constant for conditions less than 900 Deg F:	0.40
T = Cylinder (Barrel) wall thickness:	Inches

Using the formula above the MWAP for this component is: PSI

2. Front Tube Sheet

Where:

P = MAWP

S = MAS:

t = Thickness of front tube sheet:	Inches
X = Distance between C/L of hollow stays:	Inches
Y = Distance between C/L of hollow stays & C/L if 1 st row of tubes: .	Inches
C = Constant**:	2.1
	_

*A=X*Y, where x & y are pitches at right angles passing through the center of a stay. **Constant is 2.1 for stayed surfaces (From 1998 ASME Code, Section I, PFTG-23.1.3 pg 140)

Using the formula above the MWAP for this component is: PSI

3. Rear Tube Sheet (Firebox Tubesheet)

. Rear Tube Sheet (Firebox Tubesheet)	$P = \frac{\mathbf{S} * \mathbf{C} * t^2}{\mathbf{C} * t^2}$	
Where:	$P = \frac{1}{\mathbf{X} * \mathbf{Y}}$	
P = MAWP		
S = MAS:		
t = Thickness of front tube sheet:		Inches
X = Distance between C/L of tube sheet stays:		Inches
Y = Distance between C/L of bottom row of flues	to C/L of tube sheet stays:	Inches
C – Constant**:		2.1

 $P = \frac{\mathbf{S} * \mathbf{C} * t^2}{\mathbf{X} * \mathbf{Y}}$

*A=X*Y, where x & y are pitches at right angles passing through the center of a stay.

**Constant is 2.1 for stayed surfaces (From 1998 ASME Code, Section I, PFTG-23.1.3 pg 140)

Using the formula above the MWAP for this component is: PSI

4. Flues (fire tubes)

Where:	$P = S * \left[\frac{2t - 0.01D - 2e}{D - t - (0.005 * D) - e}\right]$
P = MAWP	
S = MAS for 1/2" Tubes B-88 copper:*	8,700
D = Outside diameter of tubing in inches	Inches
t = Thickness of the tubing wall in inches	Inches
e = A constant: for welded tube ends, e =	0.0 0.00
Note: For other end conditions, refer to A	SME Power Boiler Section I, Part PG-27

Using the formula above the MWAP for this component is: PSI

5.	Superheater tubes Note: enter n/a if not present Where:	$P = S * \left[\frac{2t - 0.01D - 2e}{D - t - (0.005 * D) - 2e}\right]$	<u>-</u>]	
	P = MAWP			
	S = MAS for 1" Tubes B-88 copper:	8,7	00	
	D = Outside diameter of tubing in inches:			Inches
	t = Thickness of the tubing wall in inches:			Inches
	e = A constant: For welded tube ends, e = 0.0	0.0	0	
	Note: For other end conditions, refer to ASME P	ower Boiler Section I, Part PG-27		

6. Firebox Sides (Legs) Stays:	$P=\frac{Sa}{A}$
Where:	A
P = MAWP	
S = MAS:	
A = Area of the plate in inches (Use x and y	/ below)
X = Distance that separates the stays ce	enter to center: Incl
Use vertical distance for x	
Y = Distance that separates the stays ce	enter to center: Incl
Use horizontal distance for y	
a = Cross sectional area of stays:	Sq I

Using the formula above the MWAP for this component is: PSI

Eirobox sidos:

7. Firebox sides:	$\mathbf{C} \cdot \mathbf{C} \cdot \mathbf{A}^2$
	$P = \frac{\mathbf{S} * \mathbf{C} * t^2}{\mathbf{X} * \mathbf{V}}$
Where	X * Y
P = MWAP	
S = MAS:	
t = Thickness of plate:	Inches
X = Vertical distance between C/L to C/L of stays:	Inches
Y = Horizontal distance between C/L to C/L of stay	/s: Inches
C = is defined as the constant for flat stayed surfa	ces*: 2.1
(1998 ASME Code, Sect 1, Pg 46.1 pg 36 eq #2)
Using the formula above the MWAP for this con	nponent is: PSI
8. Crown Sheet Round Stays	Sa
Note: enter n/a if not present	$P = \frac{Sa}{X * Y}$
Where	X * Y
P = MWAP	
S = MAS:	
a = Cross sectional area of the stays in inches:	
X = Vertical distance that separates the stays C/L	:o C/L:
Y = Horizontal distance that separates the stays C	/L to C/L:
Using the formula above the MWAP for this con	nponent is: PSI
9. Crown Sheet Girder Stays:	$P = \frac{C * d^2 * t}{(W - n)D_1 * W}$
PFT-30.1 gives this formula:	$P = \frac{1}{(W - p)D_1 * W}$
Note: Enter n/a if not present	
Where	
P = MWAP	
C = a constant with a value that depends on the n	umber of staybolts on each girder*:
D ₁ = Distance between girders from center to cen	ter: In.
d = Height of the girder:	In
p = Pitch of supporting bolts (1/2 of the length of	the girder if so built w/o the bolts: In
t = Thickness of the girder(s) combined	In
W = the distance of the crown sheet front to back	·
	pporting bolt, 10,000 if two or three, and 11,000 if
tour or two Mast at the girders used in model bei	ilors have notchos for water circulation which take

d 11,000 if four or five. Most of the girders used in model boilers have notches for water circulation which take the place of the bolts (Refer to the attached drawings). The leg between the centers of the notches represent the single bolt.

Using the formula above the MWAP for this component is: PSI

10 Crown Sheet:

Where

P = MWAP

S = MAS

t = thickness of the crown sheet

C = Is defined as the constant for stayed surfaces

X = Distance that separates the stays or girders center to center:

Y = Distance that separates the stays center to center front to back of boiler*: *Use ½ the length of the girder if used.

11 Mud Ring:	$P = \frac{\mathbf{S} * \mathbf{C} * t^2}{\mathbf{X} * \mathbf{V}}$
Where P = MWAP S = MAS	$P = \overline{X * Y}$
t = Thickness (height) of the Mud Ring: C = Defined as the constant for stayed surfaces: X = Width of the mud ring: Y = Length of the longest mud ring:	Inches 2.1 Inches Inches
ing the formula above the MWAP for this compon	ent is: PSI
12 Siphon Tubes: <u>Pg-27.2.2</u>	$P = \frac{2 * S * E * t}{D - (2 * Y * t)}$
Where P = MWAP	
S = MAS for K copper tube*	3,000
D = OD of tubing in inches	0.625 Inches
E = Constant for seamless or welded pipe:	1.00
V - Constant for conditions less than 900 deg E	
Y = Constant for conditions less than 900 deg F t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal pres	0.40 0.049 Inches ssure (ASME B41)
t = Thickness of tubing wall in inches	0.049 Inches ssure (ASME B41)
t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal pres	0.049 Inches ssure (ASME B41) ent is: PSI
 t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal presing the formula above the MWAP for this compon 13 Throat Sheet: Where 	0.049 Inches ssure (ASME B41)
<pre>t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal pres ing the formula above the MWAP for this compon 13 Throat Sheet: Where P = MWAP</pre>	0.049 Inches ssure (ASME B41) ent is: PSI
<pre>t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal pres ing the formula above the MWAP for this compon 13 Throat Sheet: Where P = MWAP S = MAS</pre>	$P = \frac{S * C * t^2}{X * Y}$
 t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal press ing the formula above the MWAP for this component 13 Throat Sheet: Where P = MWAP S = MAS T = Thickness of throat sheet 	
<pre>t = Thickness of tubing wall in inches *Note: Internal MAS for copper tubes with internal pres ing the formula above the MWAP for this compon 13 Throat Sheet: Where P = MWAP S = MAS</pre>	$P = \frac{S * C * t^2}{X * Y}$

$P = \frac{\mathbf{S} * \mathbf{C} * t^2}{\mathbf{X} * \mathbf{Y}}$

____ Inches

_____ Inches

Inches

2.1

14 Steam Dome: Where P = MWAP $P = \frac{2 * S * P}{D - (2 * P)}$	$\frac{\mathbf{E} * \mathbf{t}}{\mathbf{Y} * \mathbf{t}}$	<u>t)</u>
 S = MAS D = Outside diameter of the Steam Dome cylinder in inches: E = 1.00 for seamless pipe, 0.90 for welded seam or 0.60 for other seams: Y = 0.40 for conditions less than 900 degrees F: T = cylinder wall thickness: 		Inches 1.00 0.40 Inches
Using the formula above the MWAP for this component is:	psi.	
15. Firebox Backplate: S * C * t	.2	
15. Firebox Backplate: $P = \frac{S * C * t}{X * Y}$ WhereP = MWAPS = MAS: $t = Thickness of backhead sheet:$ C = Constant for flat stayed surfaces: $Z = Distance C/L to C/L of backplate stays:$ Y = distance C/L of backplate stays to bottom of firebox door:	2.1	Inches Inches Inches Inches
Using the formula above the MWAP for this component is:	<u>PSI</u>	
16 Backhead: Where $P = MWAP$ $S = MAS$ $t = Thickness of backheadC = Constant for flat stayed surfaces:X = Distance C/L to C/L of backplate stays:P = \frac{S * C *}{X * Y}$	<u>t²</u> 2.1	Inches Inches
Y = Distance C/L of hollow stays down to top of crown sheet:		_Inches
Using the formula above the MWAP for this component is:	<u>PSI</u>	
The maximum allowable working pressure (MAWP) for this boiler as		
calculations for the weakest component	is:	PSI.

Therefore, the maximum allowable working pressure will be	PSI.